

Title

Análise da Distorção Harmônica nos Serviços Auxiliares de uma Usina Termoelétrica

Registration N°: (Abstract)

Neste trabalho é apresentado um estudo sobre Qualidade de Energia Elétrica (QEE) no sistema elétrico industrial de uma usina termoelétrica a base de carvão. O estudo teve enfoque na distorção harmônica gerada nos serviços auxiliares. Portanto, foram modeladas as principais cargas dos serviços auxiliares existentes na termoelétrica, utilizando o programa AlternativeTransientsProgram (ATP), através de sua interface gráfica, o ATP Draw. Desta forma, é possível determinar os níveis de distorção harmônica em vários lugares da planta e aprofundar os estudos para mitigar as principais causas destes distúrbios. A redução da distorção harmônica junto com o aumento do fator de potência, permite um melhor rendimento da planta, aumentando o faturamento da empresa devido ao aumento de energia que é enviada ao sistema elétrico.

Authors of the paper					
Name	Country	e-mail			
MaurenPomalis Coelho da Silva	Brasil	mali_pomalis@hotmail.com			
Roberto Chouhy Leborgne	Brasil	rcl@ece.ufrgs.br			
Daphne Schwanz	Brasil	daphne@ece.ufrgs.br			
Marcelo Pessoa Gaidzinski	Brasil	marcelog@tractebelenergia.com.br			
Arturo Suman bretas	Brasil	abretas@ece.ufrgs.br			

Entidade Universidade Federal do Rio Grande do Sul – UFRGS Av. Osvaldo Aranha, 103 – Porto Alegre/RS – Brasil

Key words

Qualidade de Energia Elétrica, Distorção Harmônica, Modelagem e Simulação, ATP Draw.

Organizan / Organizer

Auspician / Sponsored

1.

A presença de distorções harmônicas na rede, como a presença de qualquer outro distúrbio de Qualidade de Energia Elétrica (QEE), minimiza o desempenho do sistema elétrico e causa mau funcionamento ou danos nos elementos que o compõe.

O estudo apresentado se destinou a modelar e simular uma geradora termoelétrica através do software ATP Draw, para investigar os principais equipamentos causadores de distorção harmônica. Com a modelagem dos principais componentes, entre motores, transformadores, linhas e cargas, a simulação no domínio do tempo e a aplicação da Transformada Rápida de Fourier nas tensões e correntes simuladas, são obtidos os valores das distorções harmônicas nos pontos de interesse na planta elétrica. E assim, podem-se sugerir medidas de melhorias no sistema elétrico da mesma.

2. ANÁLISE E REGULAÇÃO DAS DISTORÇÕES HARMÔNICAS

Distorções harmônicas são tensões ou correntes senoidais com frequências que são múltiplos inteiros da frequência fundamental, a frequência com que o sistema de abastecimento foi projetado para funcionar.

Em [1] para o cálculo da Distorção Harmônica Total (DHT), considera-se ate $a25^a$ harmônica (50^a em algumas normas), conforme mostram as equações (1) e (2).

$$DHT_I = \frac{\sqrt{\sum_{h=2}^{h_{max}} I_h^2}}{I_F} \tag{1}$$

$$DHT_{V} = \frac{\sqrt{\sum_{h=2}^{h_{max}} V_{h}^{2}}}{V_{m}}$$
(2)

Os índices de distorção harmônica são muito utilizados para determinar o nível de contribuição total individual das frequências harmônicas em determinado ponto de estudo. Em função disso, deve-se ter parâmetros para que estes resultados possam ser comparados e, com isso, poder ser determinado se tal contribuição harmônica é muito significativa no sistema elétrico da planta. Por isso, devem-se comparar esses dados com os limites recomendados pela legislação do órgão regulador competente. Os parâmetros de qualidade de energia elétrica no Brasil - entre eles as Harmônicas - são conceituados, regulados e fiscalizados pela ANEEL através do Procedimento de Distribuição de Energia Elétrica no Sistema Elétrico Nacional [2].

Segundo a ANEEL, para os cálculos de DHT, o espectro harmônico considerado deve compreender a faixa de frequências que inicie com a componente

Organizan / Organizer

fundamental e finalize, no mínimo, com a harmônica de ordem h = 25.

Tabela1 - Limites ANEEL			
Limites das distorçõ	ões harmônicas totais -		
em porcentagem da te	nsão fundamental		
Tanção Nominal do	Distorção Harmônica		
Barramento	Total de Tensão –		
	DHT (%)		
$V_n \le 1 \ kV$	10		
$1 \ kV < V_n \le 13,8 \ kV$	8		
13,8 $kV < V_n \le 69 kV$	6		
$69 kV < V_n < 230 kV$ 3			
$V_n = Tensão nominal$			

3. ESTUDO DE CASO E METODOLOGIA APLICADA

O estudo apresentado é uma pesquisa de natureza aplicada, de perfil quantitativo, que utiliza os métodos de modelagem e simulação para um estudo de caso. A pesquisa é aplicada por ter em vista a solução de um problema existente na prática; é quantitativa por utilizar dados numéricos para classificação e análise; e seu método é através de experimentação em um modelo elaborado de acordo com um sistema real, para verificação das respostas às modificações propostas.

A modelagem do sistema foi realizada utilizandose o software *Alternative Transient Program* (ATP), ele é um programa mundialmente utilizado na área de sistemas de potência. Este software é uma versão do *Electromagnetic Transients Program* (EMTP); ele é utilizado para simulação digital de fenômenos transitórios eletromagnéticos, e sua formulação matemática baseia-se na regra de integração trapezoidal, solucionando conjuntos de equações diferenciais dos componentes do sistema, no domínio do tempo. O ATP possui uma interface gráfica, chamada ATP Draw, que funciona como um pré-processador do ATP, através dele o usuário é capaz de construir um circuito elétrico qualquer, baseando-se na visualização e seleção de modelos disponíveis na interface gráfica.

Os parâmetros para modelagem de componentes de um sistema elétrico são o R, L e C (Resistência, Indutância e Capacitância). Esses parâmetros estão presentes em todo o circuito ou equipamento elétrico, em diferentes proporções. A modelagem foi focada nos serviços auxiliares da termoelétrica, como se sabe, uma usina termelétrica tem a função de gerar energia elétrica para os consumidores, mas para que ela se mantenha em funcionamento são necessários vários serviços paralelos e auxiliares a ela, que servem de suporte para que a usina permaneça em operação, eles são chamados de serviços auxiliares.

Os serviços auxiliares são o conjunto de equipamentos fundamentais para o bom funcionamento

2 / 8 Auspician / Sponsored

da usina. Alguns dos principais são: motores, transformadores, conversores, inversores, painéis de distribuição, sistema de água, sistema de ar, aquecimento, ventilação, iluminação e aterramento. A configuração do sistema elétrico, localização dos principais elementos e algumas especificações costumam ser encontradas no diagrama unifilar da usina. A Figura 1 mostra o diagrama dos serviços auxiliares da termoelétrica que foi analisada.

Figura 1: Diagrama Unifilar da Usina

4. MODELAGEM DOS COMPONENTES NO ATP DRAW

Nesta seção é apresentada a modelagem dos componentes utilizados na planta elétrica da usina termoelétrica. Os componentes que foram modelados são o gerador, os circuitos trifásicos, os transformadores, os motores e as cargas não lineares presentes no sistema. Os dados utilizados para a modelagem de cada um dos componentes estão descritos no Apêndice deste trabalho, respectivamente.

O gerador da usina termoelétrica, foi implementado no ATP Draw como uma fonte ideal de tensão (*AC Source*) em série com a reatância. Este gerador é um equivalente da tensão da barra da usina e do Sistema Interligado Nacional (SIN), visando maior

PAPER

simplificação da modelagem, sem perder a confiabilidade dos resultados.

3/8

Com relação aos circuitos trifásicos, sabe-se que, em plantas industriais, estes são considerados mais simples quando comparados aos sistemas de transmissão. Com isso, os circuitos foram modelados por uma impedância série com parâmetros R, L concentrados, e sua representação foi feita através do modelo *RLC3* do ATP Draw, desprezando-se a capacitância, por serem os trechos das linhas todos menores do que 1 km, ou seja, curtos.

Conforme [3] existem diferentes grupos de representações para transformadores, que dependem da modelagem utilizada. Para baixas e médias frequências, pode-se utilizar a determinação da matriz impedância ou da matriz admitância. Segundo [4] o grupo que utiliza representação por matrizes inclui o modelo *BCTRAN*, que é um modelo linear, e, para muitos casos, deve ser incluído o efeito de saturação e histerese na modelagem. No ATP Draw o modelo utilizado para representar os transformadores foi o *BCTRAN*.

Neste trabalho, para a modelagem dos motores de indução, foi utilizado o modelo UM_ do ATP Draw, conforme [5], [6], [7], [8],[9] e [10]. Este é o modelo mais utilizado quando se trata de estudos de distorções harmônicas.

Por fim, as cargas não lineares existentes nos serviços auxiliares da planta termoelétrica da Unidade 3 foram todas representadas através de injeção de fontes de corrente, conforme recomendado em [11]. Cada um dos equipamentos com cargas não lineares foi representado com diversas fontes de corrente, que foram inseridas no ATP Draw com valores de frequência, de amplitude e de ângulo de defasagem.

5. SIMULAÇÃO E ANÁLISE DOS RESULTADOS

Com todo o sistema elétrico da planta termoelétrica modelado no ATP Draw, foram realizadas simulações para quantificar as distorções harmônicas de corrente e tensão em alguns pontos dentro da planta termoelétrica, denominados P4, P10, P6, P8 e P2, conforme Figura 1.

5.1 Ponto P4

Esse é o ponto de maior tensão existente dentro do sistema modelado; o Ponto P4 está no secundário de um transformador que conecta os serviços auxiliares a barra de 230 kV, barra referente a conexão com o Sistema Interligado Nacional.

Organizan / Organizer

CLUB ESPAÑOL DE LA ENERGÍA

Figura 2: Tensão simulada no ponto P4

Figura 3: Corrente simulada no ponto 4

Conforme a Figura 2 e a Figura 3, o comportamento da tensão e da corrente medida no P4 não mostra distorções visíveis na forma de onda obtida no ATP Draw.

5.2 Ponto P10

Este ponto é localiza-se no secundário do transformador; no diagrama unifilar podemos observar a quantidade de cargas que estão conectadas àquela barra de 440 V, inclusive o retificador e o *UPS*, além de motores médios e pequenos.

Figura 5: Corrente simulada no ponto P10

Organizan / Organizer

No ponto P10, a percebe-se a quantidade de distorção harmônica que está ocorrendo, conforme observa-se na Figura 4 e Figura 5, o ATP Draw apontou essas distorções provavelmente devido as cargas não lineares que estão conectado a barra de distribuição de 440 V.

5.3 Ponto P6

O ponto P6 está localizado no ponto de conexão do precipitador eletrostático.

Figura 6: Tensão simulada no ponto P6

Figura 7: Corrente simulada no ponto P6

No ponto P6, a simulação realizada no ATP Draw mostra distorções consideráveis e bastante visíveis na forma de onda da tensão e de corrente, conforme a Figura 6 e a Figura 7.

5.4 Ponto P8

O ponto de monitoração P8 está no ponto de conexão do UPS.

Figura 8: Tensão simulada no ponto P8

Figura 9: Corrente simulada no ponto P8

Neste ponto, apesar do gráfico de tensão não mostrar distorções visíveis, o gráfico da corrente, mostra a quantidade de distorções geradas por esse equipamento, conforme Figuras 8 e 9.

5.5 Ponto P2

Esse ponto está na conexão do retificador A.

Figura 10: Tensão simulada no ponto P2

Figura 11: Corrente simulada no ponto P2

No ponto P2 também as distorções de corrente são visíveis, destacando-se bastante pela deformação na forma de onda, conforme Figuras 10 e 11.

Como demonstrado graficamente para cada ponto de interesse, foi possível perceber visualmente quais os pontos apresentaram maiores distorções harmônicas na tensão e na corrente.

Fazendo-se a análise com a aplicação da Transformada Rápida de Fourier, chega-se aos seguintes níveis de distorção harmônica total, para cada um dos pontos analisados, conforme Tabela 2.

Tabela2 –	Disto	rções	Harı	nôn	icas	Tot	ais
-----------	-------	-------	------	-----	------	-----	-----

	Distorções			
Ponto	DHTt ATP	DHTt Medições	DHTi ATP	DHTi Mediçõe s
P2	1,18%	0,92%	23,16%	22,69%
P4	0,35%	0,37%	0,63%	1,56%
P6	2,03%	1,45%	44,12%	48,51%
P8	1,45%	1,04%	59,41%	60,34%
P10	0,82%	0,61%	5,27%	4,63%

Através dos resultados, verifica-se que a maior diferença entre os resultados está na distorção da corrente no Ponto P4, sendo este, ainda, um ponto de análise. Entretanto, pode-se dizer que a modelagem utilizada para esta planta está de acordo com o funcionamento real da mesma, tendo em vista os resultados obtidos e comparados com as medições realizadas *in loco*.

Do ponto de vista normativo, é possível realizar uma comparação com os limites estipulados pelo Prodist. Este, entretanto, não propõe valores limites para a DHT de corrente, somente de tensão. Assim, conforme os limites estabelecidos na Tabela 1, verifica-se que para o nível de tensão da barra analisada (13,8 kV), que é de 8%, nenhum dos pontos ultrapassa este limite, estando, portanto, de acordo com os níveis descritos no Prodist.

6. CONCLUSÃO

Conforme o analisado pode-se dizer que a modelagem realizada neste estudo representa corretamente os serviços auxiliares da termoelétrica em estudo, e sua simulação corresponde ao seu funcionamento. Os resultados de distorção harmônica simulados se aproximam muito da realidade da planta.

Conforme os resultados obtidos na simulação, observa-se que há um ponto mais crítico, e que deve ser adequado, o ponto P4. Este ponto ainda está em análise, mas acredita-se que a ação de outras fontes harmônicas, que não estão representadas nesta modelagem, possam estar conectadas nesta barra e ocasionando tais distorções. Em função disso, estão sendo realizadas novas medições para identificar tais fontes harmônicas.

BIBLIOGRAFIA

- [1] ARRILLAGA, J.; WATSON, N. R. **Power system** harmonics. 2nd.ed. S.l.: John Wiley & Sons, 2003.
- [2] BRASIL. Ministério de Minas e Energia. Agência Nacional de Energia Elétrica (ANEEL). Resolução Normativa nº 469/2011: PRODIST: módulo 8, Revisão 4. Brasília, DF, 2011.

5/8

Auspician / Sponsored

Organizan / Organizer

- [3] MARTINEZ-VELASCO, J. A. **Power system** transients. Parameter Determination.S.l.: CRC Press, 2010.
- [4] OLIVEIRA, M. O. Proteção diferencial de transformadores trifásicos utilizando a transformada wavelet. 2009. 129p. Dissertação (Mestrado em Engenharia Elétrica) - Programa de Pós-Graduação em Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009.
- [5] RAMOS, A. J. P.; FONTANA, E.; LIMA, M. C. Análise do desempenho de múltiplos compensadores estáticos em sistemas radiais fortemente carregados considerando a presença de cargas dinamicamente ativas. In: SOCIEDADE BRASILEIRA SOBRE QUALIDADE DE ENERGIA ELÉTRICA (SBQEE),2.,1997,São Lourença. Anais... [S.1 : s.n], 1997. p.1-6
- [6] GONÇALVES, J. A. R. Estudo do comportamento do motor de indução trifásico sujeito a perturbações na qualidade da energia. 2008. 164p.Dissertação (Mestrado emEngenharia Electrotécnica e de Computadores) - Universidade de Trás-os-montes e Alto douro, Vila Real, 2008.
- [7] GUIMARÃES, R. Comportamento elétrico, mecânico e hidráulico de um sistema de bombeamento sob enfoque da eficiência energética.
 2008. 146p. Dissertação (Mestrado em Engenharia Elétrica) - Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Uberlândia, Uberlândia, 2008.
- [8] ZAPPELINI, A. B. Análise de eficiência energética em sistema de ar comprimido. 2008. 134p. Dissertação (Mestrado em Engenharia Elétrica) -Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Uberlândia, Uberlândia, 2008.
- BAPTISTA, J. et al. Induction motor response to periodical voltage fluctuations. In: INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2010, Rome. Proceedings...[S.l: s.n], 2010,6p.
- [10] MEDEIROS. A. S. Desenvolvimento de software para simulação de motores com dispositivos de partida baseada na integração do ATP com o TOpReDE. 2011.64p.Dissertação (Mestrado em Engenharia Elétrica) - Programa de Pós-Graduação em Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte, Natal, 2011.
- [11] DUNGAN, R. C. et al. **Electrical power systems** quality.2nd.ed. S.l.: McGraw-Hill Education, 2002.

APÊNDICE

Anexo 1 –	Dados de	Entrada o	dos Geradoro	es –Modelo
-----------	----------	-----------	--------------	------------

	AC Source				
Dados de	Gerador da Termoelétrica	Equivalente da Rede Básica			
Entrada	Valor/Informação	Valor/Informação			
	Utilizado(a)	Utilizado(a)			
Tensão [V]	20500	230000			
Frequência [Hz]	60	60			
Ângulo[°]	75.5	0			
Número de Fases	3	3			
Aterrado	Sim	Sim			
Tempo de Início [s]	-1	-1			
Tempo de Fim [s]	100	100			

Anexo 2 – Valores de R e L de cada Circuito Trifásico

Trecho	Resistência [Ω]	Indutância [mH]
Barra MC3 – Transformador B3MC771	4,37213E-3	0,1091915
Transformador B3MC771 – Barra 440V	1,199988E- 3	0,032004
Barra 440V – Transformador T1	0,04023015	0,0398655
Transformador T1 - Retificador	0,0034275	0,03574035
Barra 440V – Motor	0,0252705	0,0391479
Barra 440V – No-Break	0,0162576	0,038455
Barra MC3 – Transformador B3MC32500	4,37903E-3	0,109173
Transformador B3MC32500 – Precipitador	0,013130	0,1867568
Barra MC3 - Motor 1	0,0214805	0,1230925
Barra MC3 - Motor 2, 3, 4,5 e 6 (todos)	0,1341005	0,132885

Auspician / Sponsored

Anexo 3 – Dados dos Transformadores 1 e 2

Dada	Transformador			
Dado	1	2		
Alta Tensão [kV]	230	13.8		
BaixaTensão [kV]	13.8	6.3		
Potência [MVA]	79.4	6.28		
Conexão	Y-D (330°)	D-D (0°)		
Tensão (Circuito Aberto)[%]	100	90 100 105 110		
Corrente (Circuito Aberto) [%]	0.17	0.228 0.349 0.467 0.681		
Perdas (Circuito Aberto) [kW]	0.3019	0.0153 0.0196 0.02240.0263		
Impedância (Curto-Circuito) [%]	10.05	7.35		
Potência (Curto-Circuito) [MVA]	79.4	6.28		
Perdas (Curto-Circuito) [kW]	0.213	0.00532		

Anexo 4 – Dados dos Transformadores 3, 4 e 5

Dada	Transformador			
Dauo	3	4	5	
Alta Tensão [kV]	6.3	6.3	0.44	
BaixaTensão [kV]	0.44	0.44	0.154	
Potência [MVA]	0.8	1	0.0507	
Conexão	D-Y (330°)	D-Y (30°)	Y-D (30°)	
Tensão (Circuito Aberto) [%]	100	100	100	
Corrente (Circuito Aberto) [%]	1.1	1.1	2.94	
Perdas (Circuito Aberto) [kW]	2.53	2.53	0.327	

Impedância (Curto- Circuito) [%]	7.64	6.34	3.63
Potência (Curto- Circuito) [MVA]	0.8	1	0.0507
Perdas (Curto- Circuito) [kW]	10.38	10.28	1.47

Anexo 5 -	– Dados do	Circuito	Equivalente	dos Motores
-----------	------------	-----------------	-------------	-------------

Motor	General			
	Stator Coupling	Rotor Coils d and q	Pole Pairs	Tolerance
1A	Y	1	1	0.01885
2A,	Y	1	5	0.01885
2B				
3A,	Y	1	6	0.01885
3B,				
3C				
4A	Y	1	2	0.01885
4B				
5A,	Y	1	3	0.01885
5B				
6A,	Y	1	2	0.01885
6B				
7A,	Y	1	2	0.01885
7B,				
7C				
8A	Y	1	1	0.01885
Motor		Ν	lagnet	
	LMUD	LMUQ		Sat.
1.4	0.1764	0.1764	N	
	0.1/64	0.1764	None	
2A, 2D	0.5650	0.5650	None	
2D, 2C				
20	0.9251	0.9251	None	
3A, 3B	0.8231	0.8231	None	
14	1 1/01	1 1 4 9 1	None	
4A, 4B	1.1401	1.1401	None	
5.0	0.6314	0.6314	None	
5R	0.0514	0.0314	None	
5D 6A	0 7860	0.7860	None	
6B	0.7000	0.7000	None	
74	1 2833	1 2833	None	
7B.	1.2000	1.2000	Tione	
7C				
8A	0.0310	0.0310	None	
Motor		S	tator	
		R		L
	0	d and q	0	d and q
1	0	0.5938	0	0.0050
2	0	7.6521	0	0.0307
3	0	12.5951	0	0.0366
4	0	10.738	0	0.0393
5	0	6.4812	0	0.0247
6	0	5.5375	0	0.0240

Auspician / Sponsored

7 / 8

7	0	11.0389	0	0.0393
8A	0	0.1036	0	0.0008
Motor	Rotor			
	R		L	
	1and 2		1and 2	
1	0.1047		0.0050	
2	1.46681		0.0307	
3	3.01369		0.036	
4	3.3354		0.0393	
5	2.1582		0.0247	
6	1.9626		0.0240	
7	3.2795		0.0393	
8A	0.7060		0.0008	
Motor	Init Slip			
Allmot	100			
ors				

Anexo 6 – Frequências e Correntes Harmônicas das Cargas Não-Lineares

Precipitador					
Ordemharmônica	Frequência	Corrente			
2ª	120 Hz	45,6978 A			
3ª	180 Hz	28,7383 A			
4 ^a	240 Hz	27,7941 A			
5ª	300 Hz	19,2318 A			
6ª	360 Hz	13,5219 A			
7 ^a	420 Hz	7,7581 A			
8 ^a	480 Hz	7,7179 A			
9ª	540 Hz	6,5672 A			
10 ^a	600 Hz	6,3124 A			
11 ^a	660 Hz	5,7118 A			
12ª	720 Hz	5,2874 A			
13ª	780 Hz	4,7891 A			
14 ^a	840 Hz	4,3609 A			
15 ^a	900 Hz	4,1209 A			
Retificador					
Ordemharmônica	Frequência	Corrente			
3ª	180 Hz	0,5951 A			
4 ^a	240 Hz	0,1163 A			
5ª	300 Hz	0,3793 A			
6ª	360 Hz	0,122 A			
7 ^a	420 Hz	6,2564 A			
8ª	480 Hz	0,124 A			
9ª	540 Hz	0,1465 A			
11ª	660 Hz	0,2612 A			
13ª	780 Hz	0,1115 A			
17 ^a	1020 Hz	0,1152 A			
19ª	1140 Hz	0,1456 A			
No-break					
Ordemharmônica	Frequência	Corrente			
2ª	120 Hz	0,3407 A			
3ª	180 Hz	0,8774 A			
4 ^a	240 Hz	0,3534 A			
5ª	300 Hz	7,1983 A			
7 ^a	420 Hz	4,1221 A			
11 ^a	660 Hz	0,7575 A			
13ª	780 Hz	1,0962 A			
17 ^a	1020 Hz	0,3407 A			
19 ^a	1140 Hz	0,4036 A			
23ª	1380 Hz	0,2129 A			
25ª	1500 Hz	0,1223 A			
29ª	1740 Hz	0,2301 A			

Organizan / Organizer

